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Knowledge Graphs Are Ubiquitous
 Graphs and networks are ubiquitous
 Web & Internet
 Social networks
 Biological networks
 Research publication networks
 ……

Social Networking Websites Biological Network: 
Protein Interactions

Research Collaboration Network
Product Recommendation

Network

 Most would view knowledge graphs are 
graphs constructed from knowledge-bases

Ack. Figures are from Google images
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What Kinds of Knowledge Graphs Do We Really Need?

 What kinds of KGs could be most useful to us?
 One gigantic knowledge graph vs. many small ones
 From general knowledge-base vs. from a small text
 Homogeneous (one-type) vs. heterogenous graphs
 ……

 One general knowledge graph of world knowledge vs. 
theme/corpus-based small knowledge graphs
 One big KG: ambiguous & dynamic entities/links
 Ex. Thinking of Michael Jordan/Donald Trump 
 Theme-/corpus-based KG: Focused and accurate
 Universally needed in applications from text
 Challenges: human annotation vs. automation

Ack. Figures are from Google images
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Automated, Local Knowledge Graph Construction

 Local (theme-/corpus-based) knowledge graphs
 Where are such local KGs? 
 None?  ̶ Scattered in local texts 
 Ex.  Research papers, news, …

 Human collection and annotation are unrealistic
 Need automatic data collection and KG construction

 Automated, local (theme-/corpus-based) knowledge graph construction
 An essential task for data mining and NLP (from text to knowledge graph: T2KG)
 Approaches to be explored
 Embedding and pretrained language models (PLMs)  
 Data preparation and collection: taxonomy-guided text classification
 Structured/typed information extraction for knowledge graph construction

Ack. Figures are from Google images



7

Our General Roadmap for Mining Unstructured Text

 Mining structuring from unstructured text 
 Embedding and PLM for mining semantics from text
 Automated mining of phrases, topics, entities, links and types from text corpora

Multi-Faceted 
Taxonomies

Phrases

Fine-grained entities/relations

Text Corpus

Knowledge 

General KB

Multi-Dimensional 
Classification

Knowledge Graph 
& Info Networks
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Representation Learning in Text: Text Embedding

 Symbolic representation (one-hot vector & bag of words) vs. distributive representation 
 Embedding words in lower-dimension space: Handling sparsity & high dimensionality 
 Unsupervised learning with distributive representation: A milestone in NLP and ML
 Key idea: Words with similar meanings are embedded closer
 Word analogy: Linear relationships between words (e.g., king − queen = man−woman)

Word Similarity
Word Analogy

Typical embedding methods
Word2Vec (Google)
GloVe (Stanford)
fastText (Facebook)

Trained in Euclidean space
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Spherical Text Embedding [NeurIPS’19]
 Previous text embeddings (e.g., Word2Vec) are trained in the Euclidean space

 But used on spherical space—Mostly directional similarity (i.e., cosine similarity)

 Word similarity is derived using cosine similarity

 Better document clustering performance when embeddings are normalized, and 
spherical clustering algorithms are used
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Joint Embedding: Integrating Local and Global Contexts

 Local contexts can only partly define word semantics in unsupervised word 
embedding learning

 Design a generative model on the sphere that follows how humans write articles:

 First a general idea of the paragraph/doc, then start to write down each word 
in consistent with not only the paragraph/doc, but also the surrounding words

Local contexts of 
“harmful”

Document/
Paragraph (𝑑𝑑)

Center Word 
(𝑢𝑢)

Surrounding Word 
(𝑣𝑣)
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Understanding the Spherical Generative Model
Word Similarity: Performance Comparison

Joint Spherical Embedding: Performance Comparison

Global Context Helps Interpreting Acronyms
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 Traditional text embedding (e.g., Word2Vec, GloVe, fastText, JoSE)
 Mapping words with similar local contexts closer in the embedding space
 Not imposing particular assumptions on the type of data distributions  
 CatE: Category Name-guided Embedding [WWW’20]

 Weak guidance: leverages category names to learn word embeddings with 
discriminative power over the specific set of categories

Discriminative Topic Mining via Category Name-Guided Embedding

 CatE: Inputs

 Category names + Corpus

 CatE: Outputs 

 The same set of celebrities are 
embedded differently given 
different sets of category names
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Method of CatE: Category-name guided text Embedding

 A category-name guided text embedding learning module (E): 
 Takes a set of category names to learn category distinctive word embeddings by 

modeling the text generative process conditioned on the user provided categories

 A category representative words retrieval module (R):
 Selects category representative words based on both word embedding similarity 

and word distributional specificity

The two modules (E + R) collaborate in an iterative way: 
 E refines word embeddings and category embeddings  
 R selects representative words that will be used by E 

in the next iteration 
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Performance Study on Discriminative Topic Mining

 Quantitative comparison 
 TC: topic coherence
 MACC: Mean accuracy 
 Qualitative Comparation of 

Discriminative Topic Mining
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category names and three 

examples from the experts

Category representative phrases generated automatically

Text Analysis of Hong Kong Protests
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category names and three examples from the expertsCategory representative phrases generated automatically

Text Analysis of Russia-Ukraine Conflicts
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Hierarchical Topic Mining via Joint Spherical Tree 
and Text Embedding [KDD’20]

 JoSH: A joint tree and text embedding method
 Simultaneous modeling of the category tree structure in the 

spherical space
 Effective mining of category representative, hierarchical terms
 Ex. In PubMed literature, finding distinct terms related to 

hormones, enzymes, vitamins, and vaccines
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 Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang and Jiawei Han, “Topic Discovery via Latent Space 
Clustering of Language Model Embeddings”, in WWW’22

 Task: Automatic discovery of coherent and meaningful topics from text corpora  
 Limitations of topic modeling (a generative process)
 Ignoring word ordering information in text (based on the “bag-of-words” assumption)
 cannot leverage external knowledge to learn word semantics, and 
 Inducing an intractable posterior that requires approximation algorithms

 Why not directly deploy pre-trained language models (PLMs) for topic discovery?

Topic Discovery via Latent Space Clustering of LM Embedding

 The PLM embedding space is partitioned into 
extremely fine-grained clusters and lacks topic 
structures inherently

 PLM embeddings are high-dimensional while 
distance functions can become meaningless 

 Lack of good document representations from PLMs Visualization of 3, 000 randomly sampled contextualized 
word embeddings of BERT:  The embedding spaces do 

not have clearly separated clusters.

http://hanj.cs.illinois.edu/pdf/www22_ymeng.pdf


20

 Jointly learn the attention weights for document embeddings and the latent space generation model via 
three objectives
 (1) a clustering loss that encourages distinctive topic learning in the latent space
 (2) a topical reconstruction loss of documents that promotes meaningful topic representations for 

summarizing document semantics, and 
 (3) an embedding space preserving loss that maintains the semantics of the original embedding space

TopClus: Topic Discovery via Latent Space Clustering

Assuming the 𝐾𝐾-topic structure 
exists in a latent spherical space 𝒁𝒁
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Qualitative Evaluation of Topic Discovery
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TopClus: Performance Study

Visualization using 3, 000 randomly sampled latent word embeddings during training. Embeddings assigned to the same cluster 
are in the same color. The latent space gradually exhibits distinctive and balanced cluster structure.

Document clustering NMI scores on two 
datasets under four sets of labels

TopClus training on NYT: (a) topic coherence measured by intrusion test 
and topic diversity;  (b) document clustering NMI scores over training
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WeSTClass: Weakly Supervised Text Classification
 Modeling class distribution in word2vec embedding space

 Word2vec embedding captures skip-gram (local) similarity (i.e., words with 
similar local context windows are expected to have similar meanings)

WeSTClass (Weakly Supervised Text Classification): CIKM’18
WeSHClass (Weakly Supervised Hierarchical Text Classification): AAAI’19
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LOTClass: Label-Name-Only Text Classification [EMNLP’20]

 Yu Meng, et al., “Text Classification Using Label Names Only: A Language Model Self-Training 
Approach” [EMNLP’20]

 Inputs: A set of label names representing each class + unlabeled documents 
 Method (3 steps): Make good use of pre-trained language model (e.g., BERT)
 Step 1. Category understanding via label name replacement (learn topic vocabulary)
 Ex. “sports” → {“soccer”, “basketball”, …} (use pretrained LM to replace category name)

• Learn topic vocabulary using 
label name only

• Make good use of pretrained 
LM (e.g., BERT)

• Result from AGNews dataset
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LOTClass: Label-Name-Only Text Classification

 Step 2: Masked topic prediction: Create contextualized word-level supervisions to 
train the model for predicting a word’s implied topic

Different contexts leads to 
different BERT language 

model prediction

 Step 3: Self-training: Generalize the model via self-training on abundant unlabeled 
data to make document-level topic prediction

Label-name only 
is equiv. to 48 
labels in 
Supervised BERT
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Need: “Structuring”/Tagging Unstructured Documents 

25,000+
candidate classes

15,000+
candidate classes

 Task: Tag each doc. with a set of relevant classes from a huge candidate 
pool

 Challenges:
 Huge label space, multi-label tagging
 Limited labeled data— hard for supervised models
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TaxoClass [NAACL’21]: Taxonomy Comes to Rescue
 J. Shen, et al. “TaxoClass: Hierarchical Multi-Label Text Classification Using Only 

Class Names”, NAACL’21 
 Taxonomy!— Structure the huge label space by organizing classes hierarchically
 Enable fast label space exploration in a top-down way
 Facilitate multi-label tagging by capturing class relations

Core class



29

TaxoClass: A Weakly-Supervised Classification 
Method based on Taxonomy

 Shrink the label search space with top-down exploration
 Use a relevance model to filter out completely irrelevant classes for each document
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TaxoClass: A Weakly-Supervised Classification 
Method based on Taxonomy



 Identify document core classes in reduced label search space
 Generalize from core classes with bootstrapping and self-training



31

TaxoClass: Case Studies
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Methods
Amazon DBPedia

Example-F1 P@1 Example-F1 P@1

WeSHClass (Meng et al., AAAI’19) 0.246 0.577 0.305 0.536

SS-PCEM (Xiao et al., WebConf’19) 0.292 0.537 0.385 0.742

Semi-BERT (Devlin et al., NAACL’19) 0.339 0.592 0.428 0.761

Hier-0Shot-TC (Yin et al., EMNLP’19) 0.474 0.714 0.677 0.787

TaxoClass (NAACL’21) 0.593 0.812 0.816 0.894

TaxoClass: Performance Comparison

Semi-supervised methods 
using 30% of training set 

Weakly-supervised multi-
class classification method

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes
DBPedia: 245K Wiki articles (196K training + 49K testing), 298 classes

• vs. WeSHClass: better model document-class relevance

• vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy

• vs. Hier-0Shot-TC: better capture domain-specific information from core classes

Zero-shot method

Example-F1 =1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 2|𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 ∩ 𝑝𝑝𝑡𝑡𝑒𝑒𝑑𝑑𝑖𝑖|

𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 +|𝑝𝑝𝑡𝑡𝑒𝑒𝑑𝑑𝑖𝑖|
, P@1 = #𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑖𝑖𝑡𝑡𝑤 𝑡𝑡𝑑𝑑𝑝𝑝−1 𝑝𝑝𝑡𝑡𝑒𝑒𝑑𝑑 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑒𝑒𝑑𝑑𝑡𝑡

#𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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 Automatic extraction of knowledge graph primitives: Entities, properties and relations 
 X. Wang et al., “ChemNER: Fine-Grained Chemistry Named Entity Recognition with 

Ontology-Guided Distant Supervision”, EMNLP’21 
 ChemNER: Fine-grained NER for scientific literature
 Assign the most accurate fine-grained type to each mention under certain context 

with ontology-guided multi-type disambiguation
 Address the multi-type annotation problem
 Example text: “Although it was necessary to employ a stoichiometric quantity 

of [palladium]CATALYST, TRANSITION METAL, it is … “
 > 60% chemical entities: can be matched to more than one entity type in the 

knowledge bases provided by experts (e.g., Chem DB, MESH ontology)
 On average, each chemical entity can be matched to ~4 types in the knowledge 

bases

Automatic Extraction of Knowledge Graph Primitives
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The ChemNER Framework
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 Fine-grained chemistry type ontology:
 Wikipedia categories rooted under Chemistry
 Categories => Entity Types
 Associated Page Titles => Entity Dictionaries
 Expert proved 62 fine-grained types

Chemistry Ontology
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 Entity Span Detection
 Chemical phrase chunking
 ChemDataExtractor (Swain and Cole, 2016) 

and GeniaTagger (Tsuruoka and Tsujii, 2005)
 Flexible KB Matching
 TF-IDF-based majority voting
 Match long and complex chemistry entities 

(e.g., chemical compounds) that does not 
exist in the KBs

Entity Span Detection & Flexible KB Matching
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 Key idea: the entities in the same sentence, paragraph or document usually follow a 
focused topic. 

Ontology-Guided Multi-Type Disambiguation

Although it was necessary to employ a stoichiometric quantity of palladium , 
it is noteworthy that the cross-coupling proceeded in the presence of a wide 
array of functional groups.

CHEMICAL 
REACTION

CATALYST TRANSITION 
METAL

…

…

Context Type

CHEMICAL 
ELEMENT

Candidate Types

…

…

CATALYST, TRANSITION METAL

FUNCTIONAL GROUPS

CATALYSIS ORGANIC
REACTION

… … COUPLING
REACTION

CHEMISTRY

COUPLING REACTIONS
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 The disambiguation score:

Ontology-Guided Multi-Type Disambiguation

𝑆𝑆𝑑𝑑 𝑡𝑡𝑒𝑒𝑖𝑖
𝑗𝑗 =

∑
𝑘𝑘∈ 1,…,𝑛𝑛 ,𝑘𝑘≠𝑖𝑖, 𝑇𝑇𝑒𝑒𝑘𝑘 =1

𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑒𝑒𝑖𝑖
𝑗𝑗 , 𝑡𝑡𝑒𝑒𝑘𝑘))

𝑛𝑛 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑒𝑒𝑖𝑖
𝑗𝑗 )

A larger 𝑺𝑺𝒅𝒅 score → Candidate type is more likely to be correct

How close are the candidate and 
context types on the ontology

How fine-grained is the candidate 
type on the ontology

• 𝑙𝑙𝑙𝑙𝑙𝑙(. , . ) - the lowest common ancestor of two nodes on the type ontology
• 𝑑𝑑𝑑𝑑𝑑𝑑(. ) - the depth of the type node on the type ontology
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Exploring PLM: Sequence Labeling Model
 The flexible KB-matching and multi-type disambiguation cannot cover all the new 

entities in the corpus
 Train a sequence labeling model to further improve the recall
 RoBERTa (Liu et al., 2019), ChemBERTa (Chithrananda et al., 2020)
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Chem NER: Performance Comparison
 Dataset:
 Training: 85,702 unlabeled sentences + 62 fine-grained chemistry types
 Test: 3,000 expert-annotated sentences

Method Precision Recall F1 Score
KB-Matching 0.21 0.12 0.15

BiLSTM-CRF (2016) 0.22 0.10 0.14
RoBERTa (2019) 0.24 0.18 0.20

ChemBERTa (2020) 0.18 0.12 0.14
AutoNER (2018) 0.21 0.04 0.06

BOND (2020) 0.19 0.13 0.15
ChemNER (2021) 0.69 0.34 0.46 +0.26 absolution F1 ↑ 

Supervised 
NER

Distant 
NER

𝑃𝑃𝑃𝑃𝑑𝑑𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 (𝑃𝑃)

=
#𝑇𝑇𝑃𝑃𝑢𝑢𝑡𝑡𝑟 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑

#𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑙𝑙𝑡𝑡𝑃𝑃𝑃𝑃𝑛𝑛

𝑅𝑅𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅)

=
#𝑇𝑇𝑃𝑃𝑢𝑢𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑑𝑑

#𝐺𝐺𝑃𝑃𝑃𝑃𝑢𝑢𝑛𝑛𝑑𝑑 − 𝑇𝑇𝑃𝑃𝑢𝑢𝑡𝑡𝑟

𝐹𝐹𝐹 𝑆𝑆𝑙𝑙𝑃𝑃𝑃𝑃𝑑𝑑 =
2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅
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Recently Published Efforts Related To KG Construction
 Jiaxin Huang, Yu Meng, and Jiawei Han, “Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation 

and Instance Generation”, KDD’22 
 Yunyi Zhang, Fang Guo, Jiaming Shen, and Jiawei Han., “Unsupervised Key Event Detection from Massive Text 

Corpus”, KDD’22
 Yu Zhang, Yu Meng, Xuan Wang, Sheng Wang, Jiawei Han, “Seed-Guided Topic Discovery with Out-of-Vocabulary 

Seeds”,  NAACL’22 
 Yuxin Xiao, Zecheng Zhang, Yuning Mao, Carl Yang, Jiawei Han, “SAIS: Supervising and Augmenting Intermediate 

Steps for Document-Level Relation Extraction ”,  NAACL’22 
 Xiaotao Gu, Yikang Shen, Jiaming Shen, Jingbo Shang, Jiawei Han, “Phrase-aware Unsupervised Constituency 

Parsing”,  NAACL’22
 Minhao Jiang, Xiangchen Song, Jieyu Zhang and Jiawei Han, “TaxoEnrich: Self-Supervised Taxonomy Completion via 

Structure-Semantic Representations”,  WWW’22 
 Dongha Lee, Jiaming Shen, Seongku Kang, Susik Yoon, Jiawei Han and Hwanjo Yu, “TaxoCom: Topic Taxonomy 

Completion with Hierarchical Discovery of Novel Topic Clusters”,  WWW’22 
 Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang and Jiawei Han, “Topic Discovery via Latent Space Clustering of 

Language Model Embeddings”,  WWW’22 
 Xinyang Zhang, Chenwei Zhang, Xian Li, Xin Dong, Jingbo Shang, Christos Faloutsos and Jiawei Han, “OA-Mine: 

Open-World Attribute Mining for E-Commerce Products with Weak Supervision”,  WWW’22 
 Yu Zhang, Zhihong Shen, Chieh-Han Wu, Boya Xie, Junheng Hao, Ye-Yi Wang, Kuansan Wang and Jiawei 

Han, “Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification”,  WWW’22 

http://hanj.cs.illinois.edu/pdf/kdd22_jhuang.pdf
http://hanj.cs.illinois.edu/pdf/kdd22_yzhang.pdf
http://hanj.cs.illinois.edu/pdf/naacl22_yzhang.pdf
http://hanj.cs.illinois.edu/pdf/naacl22_yxiao.pdf
http://hanj.cs.illinois.edu/pdf/acl22_xgu.pdf
http://hanj.cs.illinois.edu/pdf/www22_mjiang.pdf
http://hanj.cs.illinois.edu/pdf/www22_dlee.pdf
http://hanj.cs.illinois.edu/pdf/www22_ymeng.pdf
https://arxiv.org/abs/2204.13874
http://hanj.cs.illinois.edu/pdf/www22_yzhang.pdf
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 What kinds of knowledge graphs do we really need?

 Theme-/corpus-based knowledge graphs

 Key issue: Automated construction of theme-/corpus-
based knowledge graphs from text

 Exploring the power of embedding and Pre-tained
Language Models (PLMs)  

 Collecting and preparing data using taxonomy-
guided text classification

 Identifying knowledge graph primitives: entities, 
properties and relations

 Towards theme/corpus-based knowledge graph 
construction

Conclusions

Ack. Figures are from Google images

Typed Entity-Relation-Property Graphs from Text

Typical KGs from Knowledge-Bases
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